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A B S T R A C T   

Accurate simulation of soil temperature can help improve the accuracy of crop growth models by improving the 
predictions of soil processes like seed germination, decomposition, nitrification, evaporation, and carbon 
sequestration. To assess how well such models can simulate soil temperature, herein we present results of an 
inter-comparison study of 33 maize (Zea mays L.) growth models. Among the 33 models, four of the modeling 
groups contributed results using differing algorithms or “flavors” to simulate evapotranspiration within the same 
overall model family. The study used comprehensive datasets from two sites - Mead, Nebraska, USA and 
Bushland, Texas, USA wherein soil temperature was measured continually at several depths. The range of 
simulated soil temperatures was large (about 10–15 ◦C) from the coolest to warmest models across whole 
growing seasons from bare soil to full canopy and at both shallow and deeper depths. Within model families, 
there were no significant differences among their simulations of soil temperature due to their differing evapo
transpiration method “flavors”, so root-mean-square-errors (RMSE) were averaged within families, which 
reduced the number of soil temperature model families to 13. The model family RMSEs averaged over all 20 
treatment-years and 2 depths ranged from about 1.5 to 5.1 ◦C. The six models with the lowest RMSEs were 
APSIM, ecosys, JULES, Expert-N, SLFT, and MaizSim. Five of these best models used a numerical iterative 
approach to simulate soil temperature, which entailed using an energy balance on each soil layer. whereby the 
change in heat storage during a time step equals the difference between the heat flow into and that out of the 
layer. Further improvements in the best models for simulating soil temperature might be possible with the 
incorporation of more recently improved routines for simulating soil thermal conductivity than the older routines 
now in use by the models.   

1. Introduction 

1.1. Background for inter-comparing crop growth models in their ability 
to simulate soil temperature (ST) 

Soil is a huge reservoir for heat storage in the soil-plant-atmosphere 
system. Some of the solar and sensible energy received each day is 
conducted into the soil reservoir, and during the night some is con
ducted back to the soil surface where it heats the air or radiates out to a 
cold sky or plant canopy. The amount of heat in the soil reservoir de
termines the soil temperature (ST), which in turn affects soil processes 
and plant growth. In the case of annual plants, such as maize (Zea mays 
L.), ST must be warm enough in the spring for seeds to germinate, and 
then the length of time to attain emergence is strongly governed by ST. 
For other crops such as winter wheat (Triticum aestivum L.) the crown of 
the plant is at or below the soil surface for many months until the ST 
warms enough in the spring for the plants to begin to grow. Of course, 
root respiration and other root processes affect plant growth all growing 
season long. Similarly, soil microbial processes also are affected by ST, 
including decomposition and nitrification, so the nutrient supply to 
plant roots and subsequent plant growth and yield are also affected. The 
soil water balance is also affected by near surface and surface ST because 
evaporation from the soil surface, dewfall, and frost accumulation are all 
functions of temperature near and at the surface. Therefore, it behooves 
crop growth models to simulate ST well in order to properly simulate 
crop growth, yield, water use, and soil processes. 

Under the umbrella of AgMIP (agricultural model inter-comparison 
and improvement project), we recently conducted an inter-comparison 
among 41 maize growth models in their ability to simulate evapo
transpiration (ET; Kimball et al., 2023). During that exercise, some of the 
modelers also simulated STs, and herein we present the results of this 
inter-comparison among 33 models in their ability to simulate STs 
compared with measured field data. Similar to the ET paper, our primary 
objective is to identify those models and approaches that are most 

accurate for simulating ST. 
Few inter-comparisons in the ability of crop growth models to 

simulate ST have been reported before. Two such model inter- 
comparisons were done on grassland that included a few models that 
could also handle annual crops like maize. Biome-BGCMuSo was one of 
two models compared by Sándor et al. (2016) and is also included 
herein. It achieved an average relative root mean square error (RRMSE) 
of 41 %, but the authors noted that improvement is needed. Another 
nine-model grassland inter-comparison included Biome-BGCMuSo, 
ARMOSA, and STICS that are also compared herein (Sándor et al., 
2017). RRMSEs ranged from 15 to 290 %, but the tabulated results were 
all anonymous, so it is not possible to ascertain which models and ap
proaches were best for simulating ST. A third inter-comparison was done 
under maize by Archontoulis et al. (2014) using APSIM with two “fla
vors” of ST routines. One was the “default” based on Williams et al. 
(1984) and the other was an “optional” routine that used a numerical 
soil-layered energy balance routine from Campbell (1985). Both simu
lated ST well (RRMSE < 17 %) at shallow depths (0–20 cm), but at 
deeper depths, the optional model did much better (RRMSE = 9.3 %) 
than the default model (RRMSE = 26 %). As will be seen, both of these 
approaches have been used by several models and similar results were 
obtained. 

1.2. Basic soil temperature physics and literature review 

As written in many soil physics texts (e.g., Campbell, 1977), the 
theory of the physics of heat flow through a slab or layer of uniform 
material was established centuries ago by Fourier, whose “law” can be 
written as: 

G = κ(ΔT /Δz) (1) 

Where G is the soil heat flux (W/m2), ΔT is the temperature differ
ence across the material ( ◦C), Δz is the length of the path of heat flow 
(m), and κ is the thermal conductivity (W m − 1 ◦C − 1). Values of κ vary 
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from about 0.22 W m − 1 ◦C − 1 for dry clay to about 2.2 W m − 1 ◦C − 1 for 
wet sand (van Wijk and De Vries, 1963). A slab of material with more 
heat flowing in than out will increase in temperature with time, t (sec
onds or other useful time units). The rate of temperature increase is 
proportional to the heat flux difference, ΔG, between the heat flow in 
minus the heat flow out and inversely proportional to the slab thickness 
as shown in Eq. (2). 

ΔT/Δt = (1 /C)(ΔG /Δz) (2)  

where C is the volumetric heat capacity (J m − 3 ◦C − 1). Values of C vary 
from about 1.3 MJ m − 3 ◦C − 1 in dry soil to 2.9 MJ m − 3 ◦C − 1 in wet soil 
for both clay and sand (DeVries, 1963). Of course, neither κ nor C are 
constant through the whole profile of a field soil because they vary with 
particle constituents, bulk density (ρb), water content (θ), and soil 
temperature. Yet, Eqs. (1) and 2 enable an energy balance (i.e. change in 
heat storage equals Gin minus Gout.) to be written for each layer within a 
soil profile where each layer would have near constant κ and C. Then 
numerical methods can be used to solve the resultant set of simultaneous 
equations for the temperature of each layer, and as will be discussed, 
several models used this approach to simulate ST (Table S1). 

However, if the temperature at the soil surface, T0, follows a sine 
wave (annual or daily) such as: 

T0 = Tavg + Asin(ωt+φ) (3)  

Where Tavg is the average temperature ( ◦C) during a cycle, A is the 
amplitude of the wave ( ◦C), φ is the phase of the wave at the soil surface 
(radians), and ω is the angular velocity (radians per second or per day or 
per year as appropriate); then if κ and C are constant with depth and 
time, the temperature at any given depth and time can be calculated 
from (i.e., Campbell, 1977): 

T(z, t) = Tavg + Aexp(− z /D)sin[ωt+φ − (z /D)] (4)  

whereD =
(
2κC− 1ω− 1)0.5 (5)  

is the so-called damping depth (m) at which the amplitude of A is 
attenuated exponentially by 1/e. Eq. (4) is a sine wave that is damped 
with depth and lagged with time into the soil. The graph on the cover 
and Fig. 2.6 (attributed to C. Tongyai) of Campbell (1977) shows it 
nicely. However, as already mentioned, neither κ nor C are generally 
constant with depth and time in soil. Further, while annual temperatures 
tend to vary sinusoidally, T0 is also affected by varying weather patterns, 
amount of crop leaf area, whether the crop is water-stressed, etc. Typical 
diurnal temperature patterns follow a sine curve from dawn until 
mid-afternoon but after that, they follow an exponential decay until 
dawn the next morning (Parton and Logan, 1981; Kimball and Bellamy, 
1986), and of course, they too are altered by changing weather and crop 
characteristics. Nevertheless, Eq. (4) enables an estimate of the ST at 
every depth and time to be quickly and analytically calculated. There
fore, as will be discussed, several models follow this alternative 
analytical approach to simulate ST (Table S1). 

1.3. Simulating soil heat capacity 

Whether using analytical Eq. (4) or using numerical Eq. (2) applied 
to all individual layers, representative values of thermal conductivity 
and heat capacity (or just damping depth) are needed in order to obtain 
accurate simulations of soil temperature. De Vries (1963) presented 
“classic” theoretical equations for calculating both, as well as typical 
values, and many of the models use his methodology and values (Table 
S1). His-equation for heat capacity is based on well-defined parameters, 
is used by almost all the models, and apparently no one has published 
improved alternatives. It is the sum of the specific heats of individual 
components of soil [i.e., mineral particles, organic matter particles, and 
water (air is insignificant)], each multiplied by its volume fraction. 

Thus, heat capacity is subject to variability in bulk density and water 
content, both of which can change with depth and time. 

1.4. Simulating soil thermal conductivity 

Similar to heat capacity, De Vries’s (1963) “classic” thermal con
ductivity equation varies with the thermal conductivities of the indi
vidual components of soil and their volume fractions. However, it’s 
more complicated because it also varies with the shape of the mineral 
and organic particles, so therefore, his equation also has particle shape 
factors. His-equation also addresses the degree to which water coats the 
particles and provides paths between them. Of course, liquid water 
movement can also carry heat, which is important when there are pre
cipitation or irrigation events, but these events are transient. However, if 
all this isn’t complicated enough, with temperature gradients in the soil, 
water vapor can diffuse from higher to lower temperature areas in the 
soil, thereby carrying latent heat and increasing the thermal conduc
tivity of the soil. However, between day and night, temperature gradi
ents reverse direction, so on a daily time scale (as opposed to hourly), 
latent heat transport is less important. However, even on sub-daily time 
scales, Kimball et al. (1976) concluded that thermal and isothermal 
vapor fluxes exactly cancelled during the day and were insignificant at 
night in a field experiment with bare clay loam soil over several seasons 
of a year. However, they also found their best fit of De Vries’s (1963) 
model to data was obtained by changing the air shape factor to negative 
values, which are physically unrealistic, yet could serve as empirical 
coefficients. Thus, as also stated by Evett et al. (2012), the shape factors 
become fitting parameters. 

Apparently, none of the 33 models included in this inter-comparison 
included vapor movement, because no references about vapor move
ment are cited by the modelers (Table S1). 

Since DeVries (1963), there are a few reports of development of more 
recent equations to simulate soil thermal conductivity along with com
parison measurements. McInnes et al. (1986) presented an equation 
relating thermal conductivity to soil water content relative to saturation 
which had five fitting parameters. Hoffmann et al. (1993) developed 
empirical equations for each of the McInnes et al. parameters relating A 
to fractions of quartz and of other minerals, B to bulk density and water 
content, C to clay content, D to bulk density squared, and E is a constant 
(4.0). The McInnes-Hoffmann equation is used in the SALUS model 
(Table S1). More recently Evett et al. (2012) fitted their soil thermal 
conductivity measurements to the McInnes equation. Fig. 6 in Evett et al. 
(2012) shows that soil thermal conductivity is weakly related to bulk 
density and almost linearly related to soil moisture. However, their soil 
moisture range only went from 0.05 to 0.22, and their Fig. 6 does not 
show the precipitous drop in thermal conductivity below 0.05 observed 
by, for example, De Vries (1963), Campbell et al. (1994), and Côté and 
Konrad (2005). 

Campbell et al. (1994) studied the effect of high temperatures (forest 
fire) on soil thermal conductivity, but they also included lower tem
peratures of 30 ◦C and 50 ◦C in their experiments and modeling. They 
modified the thermal conductivity theory of De Vries (1963) somewhat 
and obtained quite good agreement between predicted and measured 
values for seven soils and peat moss across a range of bulk density and 
soil water content for the 30 ◦C and 50 ◦C temperatures. 

Côté and Konrad (2005) following Johansen (1975) used a more 
empirical approach. They normalized the thermal conductivity versus 
water content curve of soil with the oven-dry thermal conductivity at the 
dry end and with the saturated thermal conductivity at the wet end. The 
resultant normalized curves for a variety of soils and other porous ma
terial coalesced into a much smaller band. The curvature varied some
what with texture, but after testing many materials they provided 
curvature shape values for coarse sands and gravels, for medium and 
fine sands, and for silty and clayey soils. They also provide methods to 
calculate the oven-dry and water-saturated conductivities. However, the 
experimental data in De Vries (1963), Campbell et al. (1994), and even 
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in Côté and Konrad (2005) follow a sigmoidal curve with little change 
from a minimum thermal conductivity at zero water content to a 
threshold at about 0.02–0.05 m3/m3 where apparently the water films 
around particles become continuous, and then there is an abrupt rise in 
conductivity following a more parabolic curve. Lu et al. (2007) recog
nized the threshold, and they developed a new model that again nor
malizes the conductivity at zero and saturated water contents but 
accounts for the threshold. Their model worked well over the entire 
water content range, and they also presented a simpler equation to 
compute the conductivity at zero water. However, they only worked at 
20 ◦C. Nevertheless, their RMSEs of about 0.08 W m − 1 K − 1 were only 
slightly larger than those of the more complicated model of Campbell 
et al. (1994) for their 30 ◦C curve. 

More recently Mahdavi et al. (2016) did an inter-comparison among 
four similar soil thermal conductivity models that started with (I) De 
Vries (1963), (II) some modifications by Campbell et al. (1994) to extend 
De Vries (1963) to 600 ◦C, (III) same as II except particle shapes assumed 
spherical, and (IV) following Nobre and Thomson (1993) same as I with 
needle-shaped particles and a modified shape factor for water. They 
studied four soils from coarse sand to clay loam at 28, 38, and 48 ◦C. The 
De Vries-Campbell Model III had the lowest RMSEs of about 0.22 W m − 1 

K − 1 for coarse sand and about 0.16 for loams. However, these RMSEs 
are about double those reported by Campbell et al. (1994) for his model 
at 30 ◦C and those reported for the normalization model of Lu et al. 
(2007). Unfortunately, so far as we are aware, no one has done an 
inter-comparison between the De Vries-Campbell approach and the Lu 
et al. (2007) normalization approach. In any event, the use of these more 
recent models for soil thermal conductivity along with the De Vries 
model for heat capacity may be an avenue for further improvement of 
crop growth models in their ability to simulate soil temperature, 
whether using the numerical Eq. (2) or analytical Eq. (4). 

1.5. Simulating damping depth 

In the EPIC (Williams et al., 1984, 1989) and APEX (Williams et al., 
2005, 2008) empirical equations based on bulk density and water con
tent are used to simulate damping depth without separate identifiable 
equations for thermal conductivity or heat capacity. A similar approach 
is used in the DSSAT-CSM family of models (Hoogenboom et al., 2019a, 
b; Jones et al., 2003). 

2. Materials and methods 

2.1. Observed data 

2.1.1. University of Nebraska, Mead, Nebraska, USA 
As we reported in Kimball et al. (2023), data came from one irrigated 

field and another rainfed field within 1.6 km of each other at the Uni
versity of Nebraska, Eastern Nebraska Research, Extension and Educa
tion Center near Mead, Nebraska, USA (http://csp.unl.edu/public/). 
The soils were deep silty clay loams of Yutan (fine-silty, mixed, super
active, mesic Mollic Hapludalfs), Tomek (fine, smectitic, mesic Pachic 
Argialbolls), Filbert (fine, smectitic, mesic Vertic Argialbolls), and Fil
more (fine, smectitic, mesic Vertic Argialbolls). Both fields were strictly 
no-till so plant residues were not ploughed into the soil, and the soil 
surface was generally partially covered with prior maize/soybean crop 
residue, which could have affected soil heat flux early in the growing 
seasons. However, at the irrigated field from 2010 to 2013, conservation 
tillage was employed as part of a stover removal project. Both sites are 
part of the Ameriflux (https://ameriflux.lbl.gov/sites; US-Ne2 and 
US-Ne3) U.S. surface gas flux observation system. The eddy covariance 
technique was used to determine ET of maize and soybean (Glycine max) 
in alternate years (maize in 2003, 2005, 2007, 2009, 2011, 2013), as 
well as fluxes of sensible heat and CO2. Thus, there were 12 
treatment-years (2 water regimes x 6 years) of data. Soil water contents 
in the root zone were monitored continuously at four depths (0.10, 0.25, 

0.5, and 1.0 m) at three and four locations in the irrigated and rainfed 
fields (Intensive Measurement Zones or IMZ’s), respectively employing 
Theta probe sensors (Model ML2, Delta-T Devices, Cambridge, UK) 
(Suyker and Verma, 2008, 2009). Installation holes were drilled at an 
angle of approximately 45◦ to the respective depth and the probe 
inserted into the bottom of the hole. Additional details can be found in 
Suyker and Verma (2008, 2009) and Suyker et al. (2004, 2005). 

Soil temperatures were measured in one location near the eddy 
covariance tower using an array of soil thermistors (model YSI44004, 
YSI Precision™ Thermistors and Probes, Dayton, OH). They were 
installed horizontally in-row and between row at 0.02, 0.06, 0.08, and 
0.10 m using a custom designed depth guide. Three probes at 0.20, 0.30, 
and 0.50 m were installed vertically between rows (total of 11 sensors). 
A simple half-bridge circuit was used to measure resistance of each 
thermistor. Hourly data were collected and then averaged to produce 
daily ST data to compare with simulated values from the models. 

2.1.2. USDA, Agricultural Research Service, Conservation and Production 
Research Laboratory, Bushland, Texas, USA 

Also, as we reported in Kimball et al. (2023), maize was grown in 
2013 and 2016 at the USDA-ARS Conservation and Production Research 
Laboratory (https://www.ars.usda.gov/plains-area/bushland-tx/cprl/), 
Bushland, Texas (35.18◦ N, 102.10◦ W, 1170 m above MSL) on a gently 
sloping (<0.3 %) Pullman soil (fine, mixed, superactive, thermic Tor
rertic Paleustoll). Additional details and data are provided by Evett et al. 
(2019, 2020, 2022). Four 4.4 ha fields, approximately square in shape 
and adjacent to each other, each contained a large (3 m × 3 m in surface 
area, 2.3 m deep) precision weighing lysimeter in the center. The fields 
and their associated lysimeters were designated NE, SE, NW, and SW 
according to the inter-cardinal directions. The NE and SE lysimeters and 
fields were irrigated to replace 100 % of soil moisture lost by ET using 
subsurface drip irrigation (SDI). The NW and SW lysimeters and fields 
were irrigated by mid-elevation sprinkler application (MESA) using a 
ten-span linear-move system described by Evett et al. (2019) with the 
NW receiving 100 % and SW receiving 75 % of soil moisture replace
ment. Thus, there were 8 treatment-years of data from Bushland [(1 field 
of 100 % MESA + 1 field of 75 % MESA + 2 fields of 100 % SDI) x 2 
years] plus the 12 treatment-years from Mead for a total of 20 
treatment-years. 

In the large, precision weighing lysimeters at Bushland, TX, ST was 
sensed every six seconds and reported as 15-minute mean values. The 
15-minute data were then averaged over individual days to obtain daily 
ST data to compare with the simulated values from the models. Tem
peratures at 2- and 6-cm depths were sensed in each lysimeter using soil 
water and temperature sensors (model 315 L, Acclima, Inc., Meridian, 
Idaho) that were calibrated against standards traceable to the National 
Institute of Standards and Technology. Sensors were placed at two lo
cations within the weighing lysimeter. One location was halfway be
tween the 1st row north of the south side of the lysimeter monolith and 
the interrow north of that row. The other location was halfway between 
the 2nd row north of the south side of the lysimeter monolith and the 
interrow north of that row. Both sensors were 50 cm west of the east side 
of the lysimeter monolith. Temperatures at the 100-cm depth in each 
lysimeter were sensed using a calibrated copper-constantan thermo
couple encased in a stainless-steel sheath (similar to model TJ36-ICIN, 
Omega Engineering, Norwalk, CT, USA) at a point 1 m from the wall 
of the lysimeter monolith. 

The thermocouple sensors were installed by drilling a hole through 
the steel lysimeter wall at a depth 100 cm below the soil surface and 
drilling a 1.6-mm diameter hole horizontally into the soil monolith 
followed by pushing the stainless-steel sheathed thermocouple into the 
hole and sealing the hole in the lysimeter wall against leakage. Both the 
size of the soil monolith (3 m × 3 m × 2.3 m) and the distance of the 
thermocouple from the steel wall were design factors chosen to limit the 
influence of heat conduction in the steel wall on soil temperature 
readings (Black et al., 1968; Dugas and Bland, 1991). The stainless-steel 
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sheath was not in direct contact with the lysimeter steel wall, and tests of 
the influence of temperature changes at the proximal end of the 
meter-long sensor on the temperature sensed by the thermocouple at the 
distal end of the sensor indicated negligible effect on sensed 
temperatures. 

The soil water and temperature sensors were installed at precise 
depths below the soil surface in the following way. First, the lysimeter 
soil surface was leveled, then an 18-mm thick flat plywood form was laid 
on the flat surface. The form had a cut out that allowed excavation of the 
soil beneath while leaving the outer perimeter of the form resting on the 
leveled soil surface. 

2.2. Modeling methodology 

2.2.1. Model list 
The simulations were conducted by 13 modeling groups from around 

the world with 33 models completing the inter-comparison (Table 1). 
Details about each model are presented in supplementary Table S1. Most 
of the models used hourly time steps, but some used hourly and then 
computed daily averages. Comparisons between simulated and observed 
STs were done on daily average STs. As can be seen from the names 
(Tables 1, S1), in some cases there were several “flavors” of different 
simulation methods tested within the same model family that were 
chosen by the user at run time. The biggest example is that of the DSSAT- 
CSM family (Hoogenboom et al., 2019a,b; Jones et al., 2003) of the 
cropping system model (CSM) within which both the CSM-CERES-Maize 
and CSM-IXIM-Maize (hereafter simply called CERES and IXIM) mod
ules were run. Both calculate a value called potential evapotranspira
tion, which was done using four methods: (1) FAO-56 (Allen et al., 
1998), (2) Priestley-Taylor (1972), (3) the ASCE Standardized Reference 
Evapotranspiration Equation (Allen et al., 2005) for 12-cm grass (short 
crop), and (4) the ASCE Equation for 50-cm alfalfa (tall crop; Medicago 
sativa L.) with FAO-56 dual crop coefficients for maize (Table S1). 
Within these eight combinations, two E methods for calculating soil 
water evaporation were tested: “Ritchie” (Ritchie, 1972) and “Sulei
man” (Suleiman and Ritchie, 2003, 2004). In addition, within the 
CERES-FAO-56 and CERES-Priestley-Taylor combinations, E was also 
computed using Hydrus (Šimůnek et al., 1998, 2008; Shelia et al., 2018), 
in which soil water moves based on potential gradients. Thus, there were 
a total of 18 (2 models x 4 ETp methods x 2 soil E methods + 2 Hydrus) 
DSSAT flavors. Within the DSSAT flavors, model calibrations were 
aimed at the best statistics [lowest RMSE, and highest D-statistic (Will
mott, 1982)] for growth, grain yield, ET, and soil water variables, 
averaged over four ET options (two ET by two E methods) in order to 
minimize bias. 

In addition, Expert-N had GECROS and SPASS flavors, STICS had 
KETP and ETP_SW flavors, and MAIZSIM had daily and hourly flavors. 

2.2.2. Simulation protocol 
The study was conducted in four phases with the modelers receiving 

successively more information with each phase, thereby enabling pro
gressively more model calibration with each phase. The phases were (1) 
“blind phase” wherein the modelers received only soils, weather, and 
crop management information, (2) “potential or non-stressed growth 
phase” wherein they received leaf area index, biomass, and grain yield 
for non-water-stress treatments, (3) “non-stress ET phase” wherein they 
received ET, soil water, and ST for non-water-stress treatments, and (4) 
“All phase” wherein this final phase, the modelers were provided with 
all LAI, biomass, grain yield, ET, soil moisture, soil temperature etc. data 
for all treatment-years. However, in the analysis of the ET and agro
nomic data, some model simulations improved with the progressive 
information, while a few did worse. In any event, we decided to just 
focus on the Phase 4 “All” data for these analyses of ST simulations. 

The modelers were told to start their simulations on day-of-year 91 
(DOY 91; April 1st), so there would be time for equilibration of soil 
moisture and ST. They were provided “initial” soil water content profiles 
but not initial ST profiles. By starting on DOY 91 for the Mead data, there 
were 21 days before planting in 2009 and more than a month for all 
other years. In Bushland, DOY 91 was about 6 weeks before planting. 
Therefore, there should have been enough time so that differences in 
initial soil temperatures probably were not important. The modelers 
were also supplied the average long-term air temperature for each site as 
well as the annual “amplitude”, which was actually the range between 
the monthly mean air temperature of the warmest month minus that of 
the coldest month. 

2.2.3. Methods for evaluating model performance 
Correlation coefficients (r), D statistics (Willmott, 1982), root mean 

squared errors between observed and simulated values (RMSE), 
normalized root mean squared errors (nRMSE), average differences, as 
well as mean squared deviations (MSD), standard bias (SB), non-unity of 
slopes (NU), and lack of correlations (LC) following Gauch et al. (2003), 

Table 1 
List of models and their acronyms. Within the table there are 18 “flavors” of 
models within the DSSAT-CSM family that differ in their methodology for 
simulating evapotranspiration (ET). Similarly, there are two flavors each in the 
MAIZSIM, Expert-N, and STICS model families. For details about the soil tem
perature simulation aspects of each, see “Supplementary Table S1: List of Models 
Plus Their Soil Temperature Characteristics.”.  

Acronym Model Name Reference 

AMSW APSIM-SOILWAT Keating et al., 2003 
ARMO ARMOSA Perego et al., 2013 
BIOM Biome-BGCMuSo 6.0.2 Hidy et al., 2016 
DACT DayCent-CABBI Moore et al., 2020 
DCAR DSSAT CSM-CERES-Maize ASCE-Alfalfa 

Ritchie 
DeJonge and Thorp, 
2017 

DCAS DSSAT CSM-CERES-Maize ASCE-Alfalfa 
Suleiman 

DeJonge and Thorp, 
2017 

DCFH DSSAT CSM-CERES-Maize FAO-56 Hydrus Shelia et al., 2018 
DCFR DSSAT CSM-CERES Maize FAO-56 Ritchie Sau et al., 2004 
DCFS DSSAT CSM-CERES-Maize FAO-56 Suleiman Sau et al., 2004 
DCGR DSSAT CSM-CERES-Maize ASCE-Grass 

Ritchie 
DeJonge and Thorp, 
2017 

DCGS DSSAT CSM-CERES-Maize ASCE-Grass 
Suleiman 

DeJonge and Thorp, 
2017 

DCPH DSSAT CSM-CERES-Maize Priestley-Taylor 
Hydrus 

Shelia et al., 2018 

DCPR DSSAT CSM-CERES-Maize Priestley-Taylor 
Ritchie 

Sau et al., 2004 

DCPS DSSAT CSM-CERES-Maize Priestley-Taylor 
Suleiman 

Sau et al., 2004 

DIAR DSSAT CSM-IXIM-Maize ASCE-Alfalfa 
Ritchie 

DeJonge and Thorp, 
2017 

DIAS DSSAT CSM-IXIM-Maize ASCE-Alfalfa 
Suleiman 

DeJonge and Thorp, 
2017 

DIFR DSSAT CSM-IXIM-Maize FAO-56 Ritchie Sau et al., 2004 
DIFS DSSAT CSM-IXIM-Maize FAO-56 Suleiman Sau et al., 2004 
DIGR DSSAT CSM-IXIM-Maize ASCE-Grass Ritchie DeJonge and Thorp, 

2017 
DIGS DSSAT CSM-IXIM-Maize ASCE-Grass 

Suleiman 
DeJonge and Thorp, 
2017 

DIPR DSSAT CSM-IXIM-Maize Priestley-Taylor 
Ritchie 

Sau et al., 2004 

DIPS DSSAT CSM-IXIM-Maize Priestley-Taylor 
Suleiman 

Sau et al., 2004 

ECOS Ecosys Grant and Flanagan, 
2007 

JUL JULES Best et al., 2011 
L5SH L5-SLIM-H Wolf, 2012 
MZD MAIZSIM Daily Kim et al., 2012 
MZH MAIZSIM Hourly Kim et al., 2012 
SLUS SALUS Basso and Ritchie, 

2015 
SLFT SIMPLACE LINTUL5 FAO56 SLIM3 CanopyT Wolf, 2012 
STCK STICS_KETP Brisson et al., 2003 
STSW STICS_ETP_ SW Brisson et al., 2003 
XNGM Expert-N - GECROS Priesack et al., 2006 
XNSM Expert-N - SPASS Priesack et al., 2006  
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are all presented as Supplementary Statistical Data. The statistics and 
graphs were done for the 10- and 50-cm depths for Mead and for the 6- 
and 100-cm depths for Bushland. Also included are slopes and intercepts 
of regressions of observed on simulated data, along with corresponding 
graphs for all 33 models plus the median. Thus, for 33 models plus 
median, 20 treatment-years, and 2 depths there are a total of 1360 
graphs. 

Herein, we chose to present the RMSE results ( ◦C) calculated using: 

RMSE =
[
n− 1Σ(Pi − Oi)

2]0.5  

where n = number of observations and Pi and Oi are the simulated and 

observed ith value pair. Although we used nRMSE for the ET analyses 
(Kimball et al., 2023), and although the inter-comparisons described in 
the Introduction used relative (RRMSE, same as normalized), we choose 
not to use nRMSE or RRMSE for temperature data because the values 
depend greatly on the temperature scale ( ◦C, ◦K, or◦F). Although, RMSE 
shows the magnitudes of the temperature errors in degrees, which are 
easily understood, the RMSE does not indicate the type of error. 
Following Gauch et al. (2003), there are three ways that the simulated 
values can deviate from the observations. First, there can be a standard 
bias (SB) = (P̄ -Ō)2, where P̄ is the average of the modeled values and 
Ō is the average of the observations. Second, there can be a non-unity of 

Fig. 1. (a.) Overall Root Mean Square Errors (RMSE) of daily soil temperature simulations for the 33 models listed in Table 1 for 20 treatment-years and 2 depths. 
The RMSE was calculated for each of the 20 treatment-years at the 10- and 50-cm depths for Mead and at the 6-and 100-cm depths for Bushland. Then these RMSEs 
were averaged for the 20 treatment-years and the two depths to obtain the overall RMSEs shown in the graph, along with the corresponding standard errors indicated 
by the whiskers on the bars. The model numbers are those used in the evapotranspiration paper (Kimball et al., 2023) with only the best six model families identified 
by name in subsequent figures. (b). Similar to (a.), but instead the mean square errors (MSE) are plotted as stacked bars following Gauch et al. (2003) to proportion 
the variances into standard biases (SB), non-linearity of the slopes (NL), and the lack of correlations (NC). 

B.A. Kimball et al.                                                                                                                                                                                                                              



Agricultural and Forest Meteorology 351 (2024) 110003

7

the regression slope (NU) = (1-b)2 * Σ(Pi-P̄)2 /n), where b is the slope. 
Third, there can be a lack of correlation (LC) = (1-r2) * (Σ(Oi-Ō)2/n), 
where r is the correlation coefficient. Following Gauch et al., MSE = n − 1 

Σ(Pi-Oi)2 = SB +NU + LC. Therefore, we have additionally supplied 
stacked bar graphs of SB, NU, and LC. 

3. Simulation results 

3.1. Overall RMSE and MSE components of daily soil temperature (ST) 
for all 33 models averaged over all 20 treatment-years and two depths 

The RMSE of daily ST for each season averaged over all 20 treatment- 
years and 2 depths ranged from about 1.6 ◦C for Model 44 to about 
5.3 ◦C for many of the models (Fig. 1a). Further, the largest source of the 
error was the standard bias (SB) especially in the worst models (Fig. 1b). 
The amount of the lack of correlation (LC) was similar in most of the 
models, which suggests this amount of deviation could due to scatter in 
the observed data and input parameters. Perusing the graphs in Sup
plementary Statistics and Graphs, essentially all the models with the 
largest RMSE in Fig. 1a consistently simulated STs that were too warm. It 

turns out that these models mostly belonged to the DSSAT-CSM family, 
and the many “flavors” were not statistically different from one another 
in Fig. 1a. Therefore, surprisingly, the many different “flavors” of ways 
to simulate ET within the family had little effect on simulating ST. This is 
likely because all the DSSAT flavors used the same “default” ST routine, 
which was relatively uncoupled from the ET methodology. The default 
routine in APSIM described earlier by Archontoulis et al. (2014) 
behaved similarly. The routine apparently used Eq. (4) with empirical 
expressions for A and D. Somewhat similarly, there were no significant 
differences between flavors of models within the STICS, Expert-N, and 
MaizSim families. Because the 18 flavors of DSSAT-CSM represented 
more than half of the total of 33 models, the median was heavily biased 
to the too warm temperatures of DSSAT-CSM (Figs. 1a,b). Therefore, 
because the RMSEs for all the 18 DSSAT-CSM flavors were not signifi
cantly different from one another, the RSMEs, SBs, NLs, and LCs were 
averaged across the DSSAT-CSM family, as well as across the STICS, 
Expert-N, and MaizSim families. This averaging reduced the number of 
curves or bars from 33 models to 13 model “families” in the following 
figures, although 9 of the “families” were represented by only a single 
model. 

Fig. 2. (a) Simulated soil temperatures from 13 families of maize growth models from the 10-cm depth in an irrigated field at Mead in 2003 along with the cor
responding observed values. Also shown is the median of the 13 averaged-family curves. (b) Like “a” but for the 50-cm depth. (c). Like “a" but for a non-irrigated 
rainfed field. (d) Like “c" but for the 50-cm depth. 
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3.2. Soil temperatures (ST) for 13 families of maize growth models versus 
days after planting (DAP) for Mead in 2003 (driest year) and for 
Bushland with MESA irrigation in 2013 (year with highest et rates) 

Most of the models tended to overestimate ST at the 10-cm depth in 
the irrigated field at Mead in 2003 (Fig. 2a). One model (pink curve) 
seemed to really get off track about a third of the way through the 
season. The white curve is the median of the 13 families after the within- 
family averaging, and it is close to the observed curve early in the sea
son, but it is 2–3 ◦C warmer than observed for about the last 2/3 of the 
season. However, the range from coldest to warmest model families was 
about 10 ◦C. In contrast, at the 50-cm depth (Fig. 2b), the range among 
the model families is even wider (about 15 ◦C at midseason), yet the 13- 
family median curve is close to the observed curve. 

For the Mead rainfed field at the 10-cm depth (Fig. 2c), most of the 
family-averaged models were closer to the observed curve, as indicated 
by the white median. However, two models really went off track about a 
third and a half of the way through the season, but one was too warm 
(pink curve) and the other was too cold (purple curve). Focusing next on 
the 50-cm depth (Fig. 2d), the too-cold curve was again too cold, but the 
warm one seemed to “behave” itself all season long. Ignoring the cold 

outlier, there still was about a 10 ◦C spread among the models, yet the 
13-family median was close to the observed until about halfway through 
the season when it began to diverge and became about 3 ◦C warmer by 
the end of the season. 

As happened at the 10-cm depth at Mead, most of the models 
simulated STs that were too warm at the 6-cm depth in Bushland 
(Figs. 3a,c), especially the field with 100 % MESA irrigation (Fig. 3a). 
The field with 100 % MESA irrigation was the field with the largest 
evaporative loss, which would tend to cool the soil noticeably at shallow 
depth (Evett et al., 2019). Again, there was a range of about 10 ◦C from 
coldest to warmest simulated ETs, and this was repeated for all four 
cases in Fig. 3. At the 100-cm depths (Figs. 3b,d), there were about equal 
numbers of models that were too cold and too warm, and the 13-family 
median was close to the observations. 

The down-plunging peak at DAP 5 in Fig. 3c is interesting in that it 
indicates how much and how quickly bare, dry soil can change tem
perature at shallow depths. The down-plunging peak for 100 % irriga
tion (Fig. 3a) did not change as much. In any event, apparently all the 
models have day-to-day running averages, and none followed this quick, 
cold weather change with their ST simulations. 

Fig. 3. Similar to Fig. 2 except for the soil temperatures at the 6- and 100-cm depths of fields at Bushland that were irrigated to supply 100 % or 75 % replacement of 
soil moisture in 2013. 
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3.3. Ranking of model families with respect to their ability to simulate soil 
temperatures 

The RMSE for all 33 models, all 20 treatment-years, and 2 depths 
were extracted from Supplementary Statistics and Graphs. Then, they 
were averaged within model families and results for the 13 families are 
shown for four data sets in Fig. 4: Mead at 10- and 50-cm depths and 
Bushland at 6- and 100-cm depths. Finally, they were ranked according 
to lowest RMSE among the family groups with the best six being iden
tified. For Mead at the 10-cm depth, ecosys was best followed by APSIM, 
Jules, SLFT, STICS, and Biome. The RMSE range from about 1.5 ◦C for 
ecosys to 7 ◦C for the worst, so the range was quite large. Moving to 50- 
cm depth (Fig. 4b), Jules, ecosys, APSIM, and SLFT were again among 
the best six, along with Expert-N and SALUS. The range was from about 
1.1 ◦C for Jules to about 6.7 ◦C. Looking at the 6-cm depth for Bushland 
(Fig. 4c) five of the models that were best in Mead at 10-cm (Fig. 4a) 
were also best at this shallow depth in Bushland (Jules, APSIM, Biome, 
ecosys, and STICS) with MaizSim also entering the best six. The range 
was from 1.5 ◦C for Jules to 8.1 ◦C for the worst. At the 100-cm depth in 
Bushland (Fig. 4d), again APSIM, Expert-N, SLFT, and ecosys were 
among the best six, joined by DayCent and ARMOSA. The range was 

from about 1.0 ◦C for DayCent to 5.9 ◦C for the worst. Tabulating across 
the 4 data sets, ecosys and APSIM appear in 4, Jules and SLFT appear in 
3, STICS, Biome, and Expert-N appear in 2, and SALUS, MaizSim, Day
Cent, and ARMOSA appear in 1. 

Most of the errors in the worst models were due to standard biases 
(SB, Fig. 5). The best models in all four categories (two sites and two 
depths at each site) had almost no standard biases nor non-linearity 
errors. As already mentioned, the remaining lack-of-correlation errors 
could be due to scatter in the observed data and input parameters. 

Extending from the four data sets in Figs. 4 and 5, the ranking of the 
13 model families for all 20 treatment-years and all depths is shown in 
Fig. 6. The best model-families with the lowest RMSE were APSIM, 
ecosys, Jules, Expert-N, SLFT, and MaizSim. Somewhat surprisingly, the 
smallest RMSE with APSIM at about 1.6 ◦C in Fig. 6a was a little larger 
than the smallest ones in Fig. 4, whereas the worst model at about 5.1 ◦C 
in Fig. 6a is about 1 ◦C better than the worst ones in Fig. 4. Similar to 
Fig. 5, the worst models in Fig. 6b have large standard biases, whereas 
the best ones have almost no standard biases nor non-linearity of their 
slopes. The lack-of-correlation errors were small and about the same for 
about the best eight models, again suggesting these errors could be due 
to scatter in the observed data or input parameters. 

Fig. 4. (a) Ranking of 13 maize model families according to their root mean square errors (RMSE) for simulating daily soil temperature at the 10-cm depth for the 12 
treatments at Mead with the best six models identified by name. Because there were no significant differences among “flavors” of models within the DSSAT-CSM, 
STICS, Expert-N, and MaizSim families, averages were obtained across the flavors. (b) Same as “a” except for the 50-cm depth at Mead. (c) Same as “a" except for the 
6-cm depth of the 8 treatments at Bushland. (d) Same as “c" except for the 100-cm depth at Bushland. 
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4. Discussion: numerical versus analytical methods for 
simulating soil temperature 

Perusing Table S1, it appears that the modelers have followed two 
general approaches. One is the numerical method based on numerical, 
iterative solutions of the system of equations resulting from applying 
Eqs. (1) and 2 layer by layer from the top to the bottom of the rooted 
zone. APSIM, ecosys, Expert-N, Jules, and MaizSim all follow this 
approach, which essentially entails an energy balance on each layer, 
including the top layer. Simply put, the change in heat storage during a 
time step in each layer equals the difference between the heat flow into 
and that out of the layer. This approach results in a set of simultaneous 
equations which must be solved for the temperature of each layer. The 
temperature of the top layer for the numerical solution is determined by 
an energy balance at the soil surface among radiant, sensible, latent, and 
soil heat fluxes while the temperature of the bottom boundary must be 
specified. A problem is that to achieve good accuracy near the soil 
surface where the temperature gradient is often steep, the layers need to 
be thin. Then, to avoid numerical instability, one has to ensure that 

Δt ≤ 0.5C(Δz)2 κ− 1 (https://en.wikipedia.org/wiki/Von_Neu
mann_stability_analysis). This requirement led the developers of APSIM, 
for example, to impose 48 soil temperature time steps per “crop” time 
step for the rest of the model (Table S1). Of course, these extra time steps 
cost more computational time, but APSIM was the most accurate model 

in this inter-comparison (Fig. 6), so the extra accuracy likely is worth the 
extra time. Five of the models using the numerical approach are among 
the most accurate six over all 20 treatment-years and two depths (Fig. 6). 

Among the five best models that used the numeric approach, as well 
as for those using the analytic approach, there could be several reasons 
why they differed in their accuracies to simulate soil temperature. The 
modelers could be using different algorithms to calculate soil heat ca
pacity and/or thermal conductivity. The models also differ in their 
ability to simulate plant growth, transpiration, and soil water evapora
tion, all of which would result in differences in soil water content and 
consequent effects on soil heat capacity, thermal conductivity, and 
temperature. Different users also likely had differing skill in calibrating 
their models or also in the amount of effort they devoted to the task. 

The other analytical approach being used by other models 
(ARMOSA, Biome, DSSAT-CSM (all flavors), L5SH, SALUS, SLFT, and 
STICS) involves variations of a damped annual sine wave (Eq. (4)). One 
big variation involves the annual amplitude, A. Several of the models, 
including the many DSSAT-CSM flavors, appear to follow the methods in 
EPIC (Williams et al., 1984, 1989) or APEX (Williams et al., 2005, 2008), 
which simulate A as half the difference between the average tempera
ture of the hottest month minus that of the coldest month in the annual 
temperature cycle. Then they try to account for deviations from the 
annual cycle due to variations in weather patterns by adjustments to the 
average temperature for the particular day. However, the additions for 

Fig. 5. Similar to Fig. 4 except that the mean square errors (MSE) are plotted as stacked bars following Gauch et al. (2003) to proportion the variances into standard 
biases (SB), non-linearity of the slopes (NL), and the lack of correlations (NC). 
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all flavors of DSSAT-CSM included solar radiation terms which increased 
the soil surface temperatures above air temperature during daytime, but 
they appeared to ignore that soil temperatures are below air tempera
ture at night [as well as during the daytime for irrigated fields under arid 
conditions, e.g., Kimball et al. (2015)]. Consequently, all the flavors of 
DSSAT-CSM tended to overestimate soil temperatures in this study 
(Supplementary Statistics and Graphs). Indeed, changing the adjustment 
of A to using just the average air temperature for the previous five days 
with no radiation terms reduced the RMSE of soil temperature simulated 
by DSSAT-CSM to about 1/3 of that of the previous default equation, a 
change that will be implemented in the next version release (personal 
communication). EPIC (Williams et al., 1984, 1989) also has solar ra
diation terms, but it has some accounting for prior wet days, so it per
forms better than the default in DSSAT-CSM (personal communication). 
Two decades later, APEX (Williams et al., 2005, 2008) still has changes 
based on radiation in the adjustments to A, but now they are based on 
net radiation which appears to be negative until the net radiation ex
ceeds +14 MJ m − 2 d − 1. Those models that use a damped sine wave but 
do an energy balance on the top layer (i.e., STICS and SLFT) appeared to 
do better than those prescribing a certain portion of incident or net ra
diation. SLFT managed to be among the best six (Fig. 6). Another likely 
source of error using Eq. (4) is that it presumes that the soil properties 
(constituents, bulk density, water content) are constant, so these are 
being averaged over the whole profile. However, applying Eq. (4) to a 
layered soil quickly becomes quite complex, as shown theoretically by 
van Wijk and Derksen (1963). A variant in use of Eq. (4) that could be 
explored is the application of it to successively deeper soil layers such 
that thermal conductivity and heat capacity could be recalculated for 

each layer according to the simulated water content of that layer. 
Although not theoretically correct, it would be constrained to go toward 
Tavg, so this approach could be more accurate than averaging soil 
properties over the whole profile. In any event, using an analytical 
equation like Eq. (4) enables soil temperature to be calculated quickly at 
any depth and time without any iterations or worry about numerical 
instability. 

In any event, the large range of about 10–15 ◦C in simulated ST 
(Figs. 2, 3) from the coolest to warmest models all season long from bare 
soil to full canopy and at both shallow and deeper depths and at both 
locations is of concern. Such large differences in ST would affect many 
soil processes like decomposition, mineralization, and evaporation, as 
well as direct effects on plant growth, such as altering the time from 
germination to emergence. However, more important than the range 
among the models is whether any of the models are accurate compared 
to the measured STs. As presented earlier, the model family RMSEs 
averaged over all 20 treatment-years and 2 depths ranged from about 
1.5 to 5.1 ◦C, so the best model family had errors that were less than a 
third of those of the worst, which should also improve the simulation of 
all the other soil and plant processes. 

The lack of significant differences in the RMSE errors among the 
flavors of the DSSAT-CSM, STICS, Expert-N, and MaizSim in their sim
ulations of ST are somewhat surprising considering that there were large 
changes in water content at various times during the seasons among the 
20 treatment-years and that there were significant differences among 
the flavors in their ability to simulate evapotranspiration and soil water 
content (Kimball et al., 2023). However, although the heat capacity of 
water is about double that of quartz and other soil minerals, the thermal 

Fig. 6. (a.) Ranking of 13 maize model families according their root mean square errors (RMSE) for simulating daily soil temperature at the 10- and 50-cm depths at 
Mead and for the 6- and 100-cm depths at Bushland for all 20 treatment-years with the best six models identified by name. Because there were no significant 
differences in RMSE among “flavors” of models within the DSSAT-CSM, STICS, Expert-N, and MaizSim families, overall average RMSEs were calculated across the 
flavors. (b.) Similar to (a.) except that the mean square errors (MSE) are plotted as stacked bars following Gauch et al. (2003) to proportion the variances due to 
standard biases (SB), non-linearity of the slopes (NL), and the lack of correlations (NC). 
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conductivities of quartz and other soil minerals are 15 and 5 times 
greater, respectively, than those of water (De Vries, 1963), so apparently 
the errors in ST simulation are more dominated by the accuracy of the 
solid matter thermal conductivity simulation than the errors in evapo
transpiration or soil water simulation. 

5. Conclusions 

5.1. Ignoring a couple of outliers, there was a range of about 
10–15 ◦C from the coolest to warmest models all season long from 
bare soil to full canopy and at both shallow and deeper depths. 
5.2. The model family RMSEs averaged over all 20 treatment-years 
and 2 depths ranged from about 1.5 to 5.1 ◦C. 
5.3 Most of errors of the worst models were due to large standard 
biases, whereas the several best models had relatively small but 
similar lack-of-correlation errors, suggesting these errors could be 
due to scatter in the data. These best models had very little standard 
biases nor non-linearity of their slopes. 
5.4. Within the DSSAT-CSM, STICS, Expert-N and MaizSim model 
families, there were no significant differences among the errors of 
their simulations of soil temperature due to their “flavor” methods 
for simulating evapotranspiration. 
5.5. The six model families with the lowest RMSEs were APSIM, 
ecosys, JULES, Expert-N, SLFT, and MaizSim. 
5.6. Five of these six best models (APSIM, ecosys, JULES, Expert-N, 
and MaizSim) used a numerical approach, which essentially entails 
an energy balance on each soil layer, including the soil surface, 
whereby the change in heat storage during a time step equals the 
difference between the heat flow into and that out of the layer. 
5.7. Further improvements in even the best models for simulating 
soil temperature might be possible by incorporating more recent 
algorithms for simulating soil thermal conductivity. 
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sectoŕs adaptation to global change and the 4th industrial revolution", 
No. CZ.02.1.01/0.0/0.0/16_019/0000803 financed by OP RDE. The 
Nebraska sites were also supported by a subaward as part of the 
AmeriFlux Management Project from the University of California- 
Berkeley National Lab (Prime Sponsor: Department of Energy) and the 
Nebraska Agricultural Experiment Station with funding from the Hatch 
Act (Accession Number 1002649) through the USDA National Institute 
of Food and Agriculture. The dataset from Bushland, Texas, USA was 
acquired with support from the Ogallala Aquifer Program, a consortium 
between USDA-Agricultural Research Service, Kansas State University, 
Texas AgriLife Research, Texas AgriLife Extension Service, Texas Tech 
University, and West Texas A&M University. KW was supported by the 
Met Office Hadley Centre Climate Programme funded by BEIS. 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.agrformet.2024.110003. 

References 

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration: Guidelines for 
Computing Crop Water Requirements, FAO Irrigation and Drainage Paper 56. Food and 
Agriculture Organization of the United Nations, Rome, Italy.  

Allen, R.G., Walter, I.A., Elliott, R., Howell, T., Itenfisu, D., Jensen, M., Snyder, R.L., 
2005. The ASCE Standardized Reference Evapotranspiration Equation. American 
Society of Civil Engineers, Reston, Virginia, p. 195. 

Archontoulis, S., Miguez, F.E., Moore, K.J., 2014. Evaluating APSIM Maize, soil water, 
soil nitrogen, manure, and soil temperature modules in the Midwestern United 
States. Agron J 106 (3), 1025–1040. 

Basso, B., Ritchie, J.T., 2015. Simulating crop growth and biogeochemical fluxes in 
response to land management using the SALUS model. G.P.. In: Hamilton, S.K., 
Doll, J.E., Robertson, G.P. (Eds.), The Ecology of Agricultural Landscapes: Long- 
Term Research On the Path to Sustainability. Oxford University Press, New York, 
New York, USA, pp. 252–274. 

Best, M.J., Pryor, M., Clark, D.B., Rooney, G.G., Essery, Ménard, C.B., Edwards, J.M., 
Hendry, M.A., Porson, A., Gedney, A.N., Mercado, L.M., Sitch, S., Blyth, E., 
Boucher, O., Cox, P.M., Grimmond, C.S.B., 2011. The joint UK land environment 
simulator (JULES), model description Part 1: energy and water fluxes. Geoscient. 
Model Develop. 4 (3), 677–699. https://doi.org/10.5194/gmd-4-677-2011, 01 
September 2011.  

Black, T.A., Thurtell, G.W., Tanner, C.B., 1968. Hydraulic load cell lysimeter, 
construction, calibration, and tests. Soil Sci. Soc. Am. Proceed. 32 (5), 623–629. 
https://doi.org/10.2136/sssaj1968.03615995003200050016x. 

Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., 
Bertuzzi, P., Burger, P., Bussière, F., Cabidoche, Y.M., Cellier, P., Debaeke, P., 
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